数学与统计学院
学术报告
学术报告 您现在所在位置: 首页 > 学术报告 > 正文
Decomposition Based Multiobjective Evolutionary Computation
文章来源:[]  作者:[]  时间:[2019-05-20]  阅读: 次

报告题目: Decomposition Based Multiobjective Evolutionary Computation

报告人: 张青富 讲座教授 香港城市大学

照片:

邀请人: 高卫峰

报告时间: 2019-05-27(周一) 10:00

报告地点: 信远楼II206数统院报告厅

报告人简介:张青富教授现为香港城市大学计算科学系讲座教授,先后入选“长江学者”讲座教授和国家“千人计划”。主要研究领域包括:进化计算、数学规划、神经网络、统计数据分析及其应用。张教授是香港城市大学启发式优化研究(Metaheuristic Optimization Research (MOP))课题组的带头人。该课题组提出的基于分解的多目标进化算法—MOEA/D,是当前多目标进化算法领域非常流行的算法框架,近年来受到了国内外学者的关注和研究。

张青富教授为IEEE Fellow,是IEEE Transactions on Evolutionary Computation和 IEEE Transactions on Cybernetics等计算智能领域权威期刊的副主编,同时也是其他多个国际期刊的编委会成员,是计算智能领域顶级国际会议的多届分会主席,并且获得了2010年IEEE Transactions on Evolutionary Computation的优秀论文奖(Outstanding Paper Award)。2016、2017、2018年入选Web of Science公布的计算科学领域的高引学者。

报告摘要:

Multiobjective Evolutionary Computation has been a major research topic in the field of evolutionary computation for many years. It has been generally accepted that combination of evolutionary algorithms and traditional optimization methods should be a next generation multiobjective optimization solver. Decomposition methods have been well used and studied in traditional multiobjective optimization. In this talk, I will describe MOEA/D algorithmic framework. MOEA/D decomposes a multiobjective problem into a number of subtasks, and then solves them in a collaborative manner. MOEA/D provides a very natural bridge between multiobjective evolutionary algorithms and traditional decomposition methods. It has been a commonly used evolutionary algorithmic framework in recent years. I will explain the basic ideas behind MOEA/D and some recent developments. I will also outline some possible research issues in multiobjective evolutionary computation.

[打印 关闭    
 上一篇: 机器学习系列报告(三)之神经网络在遥感图像分析中的应用
 下一篇: Interlace Polynomials of Certain Graphs
地址:陕西省西安市西沣路兴隆段266号(710126)  电话:029-81891371