报告题目:Covering points with planes
报告人:Ben Lund
照片:
邀请人:徐川东
报告时间:2025年4月28日 (星期一) 16:00-17:30
报告地点:南校区行政辅楼119会议室
报告人简介:
Ben Lund, 主要研究兴趣为离散几何与组合几何, 尤其是实空间和离散空间中的关联性问题. 于2017年获得美国罗格斯大学博士学位,随后在佐治亚大学和普林斯顿大学从事博士后研究工作。目前任韩国基础科学研究所高级研究员。
报告摘要:
Suppose that each proper subset S of a vector space is contained in a union of planes of specified dimensions, but S itself is not contained in any such union. How large can |S| be? Hailong Dao asked on Math Overflow whether such a bound always exists.
I will give a general upper bound on |S|, which is tight in some cases. In addition, I will discuss variants of this question for matroids and for subsets of (Z/p^kZ)^2.
This is joint work with Hailong Dao, Manik Dhar, and Izabella Łaba.